NANOSECOND LASERS

NL200 • NL230 • NL300

NL300 SERIES

BENEFITS

- High pulse energy (up to 1100 mJ at 1064 nm, 700 mJ at 532 nm and 450 mJ at 355 nm) ensures strong interaction with material which is excellent for LIBS and material ablation applications
- Cost-effective, single-cavity design with no amplifiers for easy alignment, high reliability and low maintenance costs
- Small size saves valuable space in the laboratory room

- Fast flashlamp replacement without realignment of laser cavity ensures easy maintenance
- Air cooling enables simple installation, easy operation and low maintenance costs
- Variety of interfaces: USB, RS232, optional LAN and WLAN ensures easy integration with other equipment

NL300 series electro-optically Q-switched nanosecond Nd:YAG lasers produce high energy pulses with 3–6 ns duration. Pulse repetition rate can be selected in range of 5–20 Hz. NL30×HT models are designed for maximum energy extraction from the active element. Up to 1100 mJ pulse energy can be produced at a 5 Hz pulse repetition rate.

A wide range of harmonic generator modules for generation up to a 5th harmonic is available. Harmonic generators can be combined with attenuators that allow smooth output energy adjustment without changing other laser parameters, i.e. pulse duration, pulse-to-pulse stability, divergence or beam profile. For a more detailed description of harmonic and attenuator modules please check our harmonic generators selection guide on the page 36.

The extremely compact laser head is approximately 480 mm long and can be fitted into tight spaces. The laser power supply has a 330 × 490 mm footprint. Easy access to the water tank from the back side of the power supply facilitates laser maintenance. Replacement of flashlamp does not require removal of pump chamber from the laser cavity and does not lead to possible misalignment.

The powering unit can be configured with water-to-water or water-to-air heat exchangers. The latter option allows for laser operation without the use of tap water for cooling.

Compact Flash-Lamp Pumped Q-switched Nd:YAG Lasers

FEATURES

- Customers recognized reliability
- Two years warranty
- Rugged sealed laser cavity
- Up to 1100 mJ pulse energy
- Better than 1 % StDev pulse energy stability
- ▶ 5-20 Hz pulse repetition rate
- ▶ 3-6 ns pulse duration
- Thermo stabilized second, third, fourth and fifth harmonic generator modules
- Optional attenuators for fundamental and/or harmonic wavelengths
- Water-to-water or water-to-air cooling options
- Replacement of flashlamps without misalignment of laser cavity
- Remote control via keypad and/or RS232/USB port

APPLICATIONS

- Material ablation
- LIBS (Light Induced Breakdown Spectroscopy)
- OPO pumping
- Remote Sensing
- LIDAR (Light Detection And Ranging)
- Mass Spectroscopy
- ▶ LIF (Light Induced Fluorescence)

For customer convenience the laser can be controlled via PS with LabView[™] drivers (included) or a remote control pad. Both options allow easy control of laser settings.

34

NL300 SERIES

SPECIFICATIONS ¹⁾

Model	NL303HT		NL305HT			
Pulse repetition rate	10 Hz	20 Hz	10 Hz	5 Hz		
Pulse energy:						
at 1064 nm	750 mJ	700 mJ	1000 mJ	1100 mJ		
at 532 nm ²⁾	380 mJ	320 mJ	500 mJ	700 mJ		
at 355 nm ³⁾	250 mJ	210 mJ	320 mJ	450 mJ		
at 266 nm ⁴⁾	80 mJ	60 mJ	100 mJ	120 mJ		
at 213 nm ⁵⁾	13 mJ	10 mJ	20 mJ	25 mJ		
Pulse energy stability (StdDev) 6)		ll		1		
at 1064 nm	1%					
at 532 nm	1.5 %					
at 355 nm	3 %					
at 266 nm	3.5 %					
at 213 nm	6%					
Power drift ⁷)	±2 %					
Pulse duration ⁸⁾	3–6 ns					
Polarization	vertical		vertical, >65 %	vertical, >90 %		
Optical pulse jitter ⁹⁾	vertical, >90 % vertical, >65 % vertical, >90 %					
Linewidth	<1 cm ⁻¹					
Beam profile ¹⁰		Hat-Top in near and near				
Typical beam diameter ¹¹⁾	~8	•	~10 mm			
Beam divergence ¹²⁾	~8 mm ~10 mm <0.6 mrad					
Beam pointing stability ¹³⁾						
Beam height	50 μrad RMS 68 mm					
Beamheight		00 111				
PHYSICAL CHARACTERISTICS						
Laser head size (W \times L \times H) ¹⁴⁾	154 × 475 × 128 mm					
Power supply unit (W \times L \times H)	330 × 490 × 585 mm					
Umbilical length		2.5 n	n			
OPERATING REQUIREMENTS						
Water consumption (max 20 °C) ¹⁵⁾	<8 l/min	<12 l/min	<10 l/min	<6 l/min		
Ambient temperature	(0 <i>iy</i> mm	15–30	•	vo 1/11111		
Relative humidity						
Power requirements ^{16) 17)}	20-80 % (non-condensing) 208-240 V AC, single phase 50/60 Hz					
Power consumption ¹⁸⁾	<1 kVA	<1.5 kVA	<1.5 kVA	<1 kVA		
	<1 KVA			<1 KVA		
Cleanliness of the room		not worse than	ISO Class 9			
¹⁾ Due to continuous improvement, all specifications are subject to change without notice. The parameters marked typical are not specifications. They are indications of typical performance and will vary with each unit we manufacture. Unless stated otherwise all specifications are measured at 1064 nm and for basic system without options.	time interval. ⁷⁾ Measured over 8 h warm-up when am	ses, emitted during 30 sec ours period after 20 min ibient temperature variation and humidity <± 5%. NC OUT pulse.		VISILE AND/OR INVISILE LASE RADIAR MOID PT 60 SINK DOD/SUR TO DIREC AND/OR OR SUNT BOD/SUR TO DIREC MOID OT 60 SINK DOD/SUR TO DIREC MOID OT 60 SINK DIRE DOM SUR TO MOID OT 60 SINK DIRECTOR DO SINK DIRECTOR DOM SUR TO SINK DIRECTOR DO SINK DIRECTOR DO SINK DIRECTOR DO SINK DIRECTOR DO SINK DIRECTOR DO SINK DIRECTOR DO SINK DIRECTOR DO SINK DIRECTOR DO SINK DIRECTOR DO SINK DIRECTOR DO SINK DIRECTOR DO SINK DI SINK DIRECTOR DO SINK		
With H300SH, H300S or H300SHC harmonic generator modules. See harmonic generator selection guide on the page 36 for more	¹⁰⁾ Near field (at the c is >70%.	nutput aperture) TOP HAT fit				
detailed information. With H300THC harmonic generator modules.	1/e ² level.					
See harmonic generator selection guide on the page 36 for more detailed information. With H300SH and H400FHC harmonic	¹³⁾ Beam pointing stal movement of the b	bility is evaluated as beam centroid in the focal				
generator modules. See harmonic generator selection guide on the page 36 for more detailed information.		g element. erator selection guide on the onic generators units sizes.	election guide on the			
With H300FiHC harmonic generator module. See harmonic generator selection guide on the	 ¹⁵⁾ For water cooled version. Air cooled version does not require tap water for cooling. ¹⁷⁾ 110 V AC powering is available, please inquire tap water for cooling. 					
page 36 for more detailed information.	¹⁶⁾ Power requirement	ts should be specified when	18) Required current rating can be calculated by dividing power value by mains voltage value			

- ¹⁶⁾ Power requirements should be specified when ordering.
- Required current rating can be calculated by dividing power value by mains voltage value.

OPTIONS

- Option -AW air-cooled power supply option. An adequate air conditioner should be installed in order to keep room temperature stable.
- ▶ Harmonic generator options an extensive selection of harmonic generators up to 5th harmonic.
- Attenuator options allow a smooth change of laser pulse energy, while other laser pulse parameters, such as pulse duration, jitter, pulse-to-pulse stability, beam divergence and profile remain the same.

OPTIONAL HARMONIC GENERATOR AND ATTENUATOR MODULES

Module	Description	Output ports	Output pulse energy specifications	Dimensions W×L×H, mm	Extension possible?	Notes
H300A	Attenuator for 1064 nm beam	Port 1: 1064 nm beam	Transmission in 5–90% range at 1064 nm		No	Integrated into a laser head
H300SH	Second harmonic generator	Port 1: 1064, 532 nm	n/d	154×160×128	Yes	
H300S	532 nm beam separator	Port 1: 532 nm Port 2: residual 1064 nm	See NL300 specifications for 532 nm beam	154×160×128	No	Should be used with H300SH
H300SHC	Second harmonic generator with 532 nm beam separator	Port 1: 532 nm Port 2: residual 1064 nm	See NL300 specifications for 532 nm beam	154×210×128	No	
H300SHA	Second harmonic generator, beam separator and attenuator for 532 nm beam	Port 1: 532 nm Port 2: residual 532 nm	Transmission in 5–90% range at 532 nm	154×260×128	No	
H300THC	Third harmonic generator with 355 nm beam separator	Port 1: 355 nm Port 2: residual 1064 & 532 nm	See NL300 specifications for 355 nm beam	154×210×128	No	Should be used with H300SH
H300THA	Third harmonic generator, beam separator and attenuator for 355 nm beam	Port 1: 355 nm Port 2: residual 355 nm	Transmission in 5–90% range at 355 nm	154×260×128	No	Should be used with H300SH
H300FHC	Fourth harmonic generator with 266 nm beam separator	Port 1: 266 nm Port 2: residual 532 nm	See NL300 specifications for 266 nm beam	154×260×128	No	Should be used with H300SH
H300FHA	Fourth harmonic generator, beam separator and attenuator for 266 nm beam	Port 1: 266 nm Port 2: residual 266 nm	Transmission in 5–75% range at 266 nm	154×430×128	No	Should be used with H300SH
H300FiHC	Fifth harmonics generator with 213 nm beam separator	Port 1: 213 nm Port 2: residual 1064, 532 & 266 nm	See NL300 specifications for 213 nm beam	154×350×128	No	

OUTLINE DRAWINGS

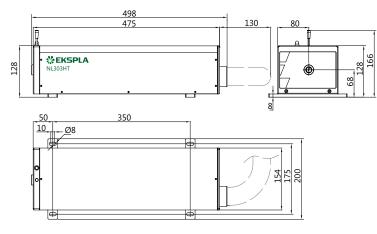
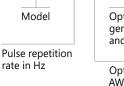



Fig 1. Typical NL300 series laser head outline drawing

ORDERING INFORMATION

Note: Laser must be connected to the mains electricity all the time. If there will be no mains electricity for longer that 1 hour then laser (system) needs warm up for a few hours before switching on.

NL303HT-10-AW-H300SH-H300THC

Optional harmonic generator modules and other accessories

Options: AW \rightarrow water-air heat exchanger

NL200 • NL230 • NL300

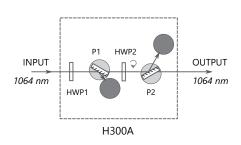
HARMONIC GENERATORS & ATTENUATORS

Nanosecond Q-switched lasers enable simple and cost effective laser wavelength conversion to shorter wavelengths through harmonic generation. EKSPLA offers a broad selection of wavelength conversion accessories for NL300 series lasers. The purpose of this guide is to help configure available harmonic generator and attenuator modules for NL300 series lasers for optimal performance.

The harmonic module uses a modular design that allows reconfiguration of laser output for the appropriate experiment wavelength. A typical module houses a non-linear crystal together with a set of dichroic mirrors for separating the harmonic beam from the fundamental wavelength. Nonlinear crystals used for the purpose of wavelength conversion are kept at an elevated temperature in a thermo-stabilized oven.

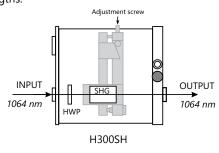
Two or more modules can be joined together for higher harmonic generation: attaching one extra module to a second harmonic generator allows for the generation of 3rd or 4th harmonic wavelengths. It should be noted that only modules with a single output port can be joined together: it is possible to attach a H300S module to a H300SH unit for 532 nm beam separation, or a H300FHC module for 4th harmonic generation (see detailed description below). Modules with two output ports (e.g., H300SHC) cannot be attached to extra units.

For NL300 Series Lasers

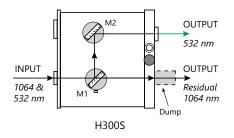

FEATURES

- Compact harmonic modules
- Thermo stabilized crystals for long lifetime
- Dichroic mirrors
- AR coatings on crystals
- Phase matching by mechanical adjustment
- ► High conversion efficiency
- Wide selection of different configurations
- Smooth adjustment of output pulse energy with attenuator

H300A attenuator


The H300A1 module is integrated into the laser head and designed to attenuate a **1064 nm**.

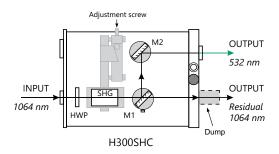
Beam (the length of the laser head extends to 619 mm). Optical layout includes half-wave plates HWP1, HWP2 and polarizers P1, P2. Rotation of the HWP2 half-wave plate changes the polarization of the laser beam and its transmission factor via the P2 polarizer.


H300SH harmonic generators

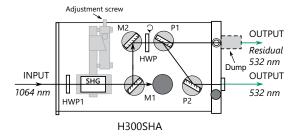
H300SH module contains a SH crystal with a half-wave plate for input polarization adjustment. The output of the H300SH module has both 532 nm and 1064 nm wavelengths.

H300S harmonic separator

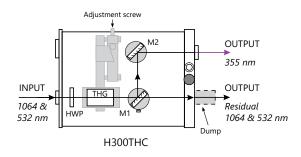
The H300S module has two output ports for the separation of **1064 nm** and **532 nm** wavelengths.



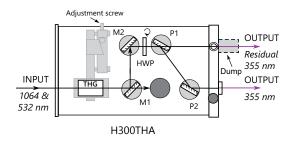
NL300 SERIES


H300SHC harmonic generator

The most cost-effective solution for customers who need a 532 nm wavelength only, the H300 SHC module combines a SHG crystal and beam separators and has two output ports for 532 nm and 1064 nm beams.


H300SHA harmonic generator & attenuator

The cost-effective solution for customers who need an attenuated 532 nm wavelength, the H300SHA module combines a SHG generator with attenuator.


H300THC harmonic generator

The H300THC module is a third harmonic generator and beam separator with two output ports for a 355 nm beam, and for a residual 532 nm + 1064 nm beam. This module should be used with the H300SH module.

H300THA harmonic generator & attenuator

The cost-effective solution for customers who need an attenuated 355 nm wavelength, the H300THA module combines a THG generator with attenuator.

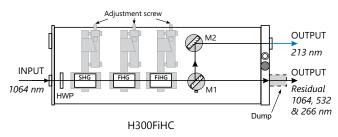
The H300FiHC module is designed to produce a 5th

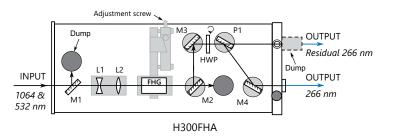
harmonic output. As it requires only a 1064 nm input, the

unit contains SH, FH and FiH crystals together with a beam

H300FiHC harmonic generator

separator for a 213 nm beam.


H300FHC harmonic generator


The H300FHC module is a fourth harmonic generator and beam separator for a 266 nm wavelength, with two output ports for a 266 nm beam, and for a residual 532 nm beam. This module should be used with the H300SH module.

H300FHA harmonic generator & attenuator

The cost-effective solution for customers who need an attenuated 266 nm wavelength, the H300FHA module combines a FHG generator with attenuator.

